Искусственный интеллект в программировании: чего ждать, чего бояться

Алан-э-Дейл       28.07.2022 г.

Деревья поведений

  • Узлы теперь возвращают одно из трёх значений: «успешно» (если работа выполнена), «безуспешно» (если выполнить её не удалось), или «выполняется» (если работа всё ещё выполняется и полностью не закончилась успехом или неудачей).
  • Теперь у нас нет узлов решений, в которых мы выбираем из двух альтернатив, а есть узлы-«декораторы», имеющие единственный дочерний узел. Если они «успешны», то выполняют свой единственный дочерний узел. Узлы-декораторы часто содержат условия, определяющие, окончилось ли выполнение успехом (значит, нужно выполнить их поддерево) или неудачей (тогда делать ничего не нужно). Также они могут возвращать «выполняется».
  • Выполняющие действия узлы возвращают значение «выполняется», чтобы обозначить происходящие действия.

Хронология изучения и развития искусственного интеллекта

  • 1943 г. — У. Маккалок и У. Питтс опубликовали научные труды, где заложили основы идеи искусственных нейронных сетей и предложили модель нейрона, созданного искусственно.
  • 1949 г. — Д.Хебб описал принципы обучения групп нейронов.
  • 1956 г. — Вводится понятие ИИ.
  • 1969 г. — Пайперт и Минский обнаружили и обосновали непреодолимые на тот момент времени вычислительные проблемы, возникающие при создании искусственных нейронных сетей. И интерес к ним на какое-то время практически сошел на нет.
  • 1950 г.- Исследования А. Тьюринга, в популярной форме — в форме теста — показали близость интеллекта человека и машины. Человек и робот общаются с другим человеком посредством телетайпа или чата. Этот человек не знает, кто есть кто. Если робот при этом самого выбрать себя за человека, значит, он и представляет собой пресловутый ИИ.
  • 1954 г. — Рождение компьютерной лингвистики. Джорджтаунский эксперимент показал возможности машинного перевода текстов. Эксперимент описывали все крупные мировые СМИ. И несмотря на то, что переводить удавалось лишь самые примитивные тексты, подавалось это как большой научный прорыв.
  • 1965 г. — Создание первой экспертной системы Dendral. По данным ИК, СМ, ЯМ – спектрометрии и данных, предоставленных пользователем, ИИ выдаёт результат в виде химической структуры. Экспертная система может отбрасывать не подошедшие гипотезы, и применять новые. Ещё одна экспертная система MYCIN была создана в 1970 г. и могла распознавать патогенные бактерии, подбирать антибиотики для их уничтожения с расчетом дозировок.
  • 1966 г. — Создана компьютерная программа Элиза, которая может поддерживать разговор, выдавая себя за человека.
  • 1969 г. — Начало развития робототехники, создание первого универсального робота Фредди.
  • 1970 г. — 17 ноября- посадка на лунную поверхность «Лунохода-1», самоходного аппарата, управляемого дистанционно, проработал 11 лунных дней, проехав 10 540 метров.
  • 1970 г. — Создание экспертной системы MYCIN, которая анализирует симптомы инфекционных заболеваний крови и предлагает рекомендации по лечению.
  • 1971 г. — Создание робота из Стэнфорда – первого мобильного робота, действующего по внутренней программе без руководства человека.
  • 1981 г. — Создание промышленных роботов с микропроцессорным управлением и развитой сенсорикой.
  • 1982 г. — Возврат интереса к нейронным сетям и создание сети с двухсторонней передачей информации (сеть Хопфилда).
  • 1982 г. — Начинается разработка первой системы распознавания речи.
  • 1993 г. — В Массачусетском технологическом институте успешно работает робот — экскурсовод.
  • 1997 г. — Компьютер DeepBlue играет в шахматы с Гарри Каспаровым и одерживает победу.
  • 1999 г. — Появление домашней робособаки Sony Aibo. Через 7 лет проект, так и не ставший сенсационным, был закрыт, но в 2017 году разработчики к нему вернулись.
  • 2009 г. — Создание поисковой системы WorframAlpha, которая может распознавать естественные речевые запросы.
  • 2010 г. — Использование ИИ в приложениях и устройствах для потребителя. Огромные базы данных стали прорывом в обучении ИИ, к тому же были созданы новые производительные алгоритмы обучения нейтронных сетей.
  • 2017 г. — 34 сотрудника компании FukokuMutualInsurance, занимающейся страхованием, были заменены одним компьютером.
  • 2017 г. — Рекомендательный ИИ на Amazon делает 40% продаж, оценивая товары, которые покупатели купят с большей долей вероятности

Работа над AI – одна из важнейших и перспективных проблем в настоящее время. Закон Мура предполагает, что в 2029 году быстродействие компьютера сравнится с уровнем работы человеческого мозга. А в 2045 году искусственный интеллект должен превзойти способности человека и начать самообучаться.

Однако основной проблемой подобных систем является не сложность обработки информации и поиск наиболее оптимальных путей решения поставленных задач, а способность мыслить и чувствовать в широком понимании этого слова. Первые наработки в этом направлении появились с развитием нейросетей, которые позволяют устанавливать меняющиеся связи между различными событиями и явлениями подобно нейронам в мозге, только работающим в тысячи раз быстрее. Отрицательными сторонами такой нейросети является невозможность их запрограммировать, они должны обучаться на собственном опыте.

Сергей Ширкин

Технологии искусственного интеллекта в таком виде, в каком они применяются сейчас, существуют около 5–10 лет, но для того, чтобы их применить, как это ни странно, требуется большое количество людей. Соответственно, основные расходы в сфере искусственного интеллекта — это расходы на специалистов. Тем более что почти все базовые технологии искусственного интеллекта (библиотеки, фреймворки, алгоритмы) бесплатны и находятся в открытом доступе. Одно время найти специалистов по машинному обучению было практически невозможным делом. Но сейчас, во многом благодаря развитию MOOC (англ. Massive Open Online Course, массовый открытый онлайн-курс) их становится больше. Высшие образовательные учреждения тоже поставляют специалистов, но и им часто приходится доучиваться на онлайн-курсах.

Сейчас искусственный интеллект вполне может распознать, что человек задумал сменить работу, и может предложить ему соответствующие онлайн-курсы, многие из которых можно проходить, имея в наличии лишь смартфон. А это означает, что заниматься можно даже находясь в пути — например, по дороге на работу. Одним из первых таких проектов был онлайн-ресурс Coursera, но позже появилось много подобных образовательных проектов, каждый из которых занимает определенную нишу в онлайн-образовании.

Нужно понимать, что ИИ, как и любая программа, — это прежде всего код, то есть определенным образом оформленный текст. Этот код нуждается в развитии, обслуживании и совершенствовании. К сожалению, само собой это не происходит, без программиста код не может «ожить». Поэтому все страхи о всемогуществе ИИ не имеют оснований. Программы создаются под строго определенные задачи, они не обладают чувствами и устремлениями подобно человеку, они не совершают действий, которые в них не заложил программист.

Можно сказать, что в наше время ИИ обладает лишь отдельными навыками человека, хотя и может в быстроте их применения опережать среднестатистического человека. Правда, на выработку каждого такого навыка тратятся многочасовые усилия тысяч программистов. Самое большое, на что пока способен ИИ — автоматизировать некоторые физические и умственные операции, освобождая тем самым людей от рутины.

Направления исследований

Философы пока не пришли к единому мнению о том, какова природа человеческого интеллекта, и каков его статус. В связи с этим в научных работах, посвященных ИИ, встречается множество идей, повествующих, какие задачи решает искусственный интеллект. Также отсутствует единое понимание вопроса, какую машину можно считать разумной.

Сегодня развитие технологий искусственного интеллекта идет по двум направлениям:

  1. Нисходящее (семиотическое). Оно предусматривает разработку новых систем и баз знаний, которые имитируют высокоуровневые психические процессы типа речи, выражения эмоций и мышления.
  2. Восходящее (биологическое). Данный подход предполагает проведение исследований в области нейронных сетей, посредством которых создаются модели интеллектуального поведения с точки зрения биологических процессов. На базе этого направления создаются нейрокомпьютеры.

1960–1970 годы

В 1960-х и 1970-х годах Джоэл Мозес продемонстрировал силу символического рассуждения для задач интеграции в программе Macsyma, первой успешной программе, основанной на знаниях в математике. Леонард УР и Чарльз Фосслер опубликовали в 1963 году “программу распознавания образов, которая генерирует, оценивает и корректирует собственных операторов”, в которой описана одна из первых программ машинного обучения, которая могла адаптивно приобретать и изменять функции. Марвин Мински и Сеймур Паперт опубликовали перцептроны, которые продемонстрировали границы простых нейронных сетей. Алена Colmerauer разработана Пролог язык программирования. Тед Шортлифф продемонстрировал силу основанных на правилах систем представления знаний и вывода в медицинской диагностике и терапии в том, что иногда называют первой экспертной системой. Ханс Моравец разработал первый управляемый компьютером автомобиль для автономного преодоления препятствий.

Рынок технологий искусственного интеллекта

Ожидается, что рынок к 2025 году вырастет до 190,61 млрд долларов, при ежегодном темпе прироста — 36,62%. На рост рынка влияют такие факторы, как внедрение облачных приложений и сервисов, появление больших массивов данных и активный спрос на интеллектуальных виртуальных помощников. Однако экспертов, разрабатывающих и внедряющих технологии ИИ, пока немного, и это сдерживает рост рынка. Системам, созданным на основе ИИ, необходима интеграция и техническая поддержка при обслуживании.

Процессоры для ИИ

Современные задачи ИИ требуют мощных процессоров, которые могут обрабатывать огромные массивы данных. Процессоры должны иметь доступ к большим объемам памяти, также устройству необходимы высокоскоростные каналы передачи данных.

В России

В конце 2018 года в России запустили серию серверов «Эльбрус-804», показывающих высокую производительность. Каждый из компьютеров оснащен четырьмя восьмиядерными процессорами. С помощью данных устройств можно выстроить вычислительные кластеры, они позволяют работать с приложениями и базами данных.

Драйверами и лидерами рынка являются две корпорации — Intel и AMD, производители самых мощных процессоров. Intel традиционно концентрируется на выпуске машин с более высокой тактовой частотой, AMD ориентирована на постоянное увеличение числа ядер и обеспечение многопоточной производительности.

Примечания

  1. Отчет IDC
  2. «Дорожная карта развития «сквозной» цифровой технологии `Нейротехнологии и искусственный интеллект`»
  3. Insights/Artificial Intelligence/Notes from the frontier Modeling the impact of AI on the world economy/MGI-Notes-from-the-AI-frontier-Modeling-the-impact-of-AI-on-the-world-economy-September-2018.ashx Notes from the AI frontier modeling the impact of ai on the world economy
  4. Big Data and AI Executive Survey 2019
  5. Fortune Here’s How Much Companies Are Spending on Artificial Intelligence: Eye on A.I.
  6. The 10 Best Examples Of How Companies Use Artificial Intelligence In Practice
  7. Artificial Intelligence (AI) In China: The Amazing Ways Tencent Is Driving It’s Adoption
  8. Вот самые убедительные приложения для глубокого обучения от Facebook

Отличие искусственного интеллекта от естественного

Интеллект можно определить как общую умственную способность к рассуждению, решению проблем и обучению

В силу своей общей природы интеллект интегрирует когнитивные функции, такие как восприятие, внимание, память, язык или планирование. естественный интеллект отличает осознанное отношение к миру

Мышление человека всегда эмоционально окрашено, и его нельзя отделить от телесности. Кроме того, человек — существо социальное, поэтому на мышление всегда влияет социум. ИИ не имеет отношения к эмоциональной сфере и социально не ориентирован.

Как сравнить человеческий и компьютерный интеллекты?

Сравнить мышление человека с искусственным интеллектом можно исходя из нескольких общих параметров организации мозга и машины. Деятельность компьютера, как и мозга, включает четыре этапа: кодирование, хранение, анализ данных и выдачу результата. Кроме того, мозг человека и ИИ могут самообучаться в зависимости от данных, полученных из окружающей среды. Также человеческий мозг и машинный интеллект решают проблемы (или задачи), используя определенные алгоритмы.

У компьютерных программ есть IQ?

Нет. Показатель IQ связан с развитием интеллекта человека в зависимости от возраста. ИИ в чем-то превышает некоторые человеческие способности, например может удерживать в памяти огромное количество цифр, но это не имеет отношения к IQ.

Что такое тест Тьюринга?

Алан Тьюринг разработал эмпирический тест, который показывает, способна ли программа уловить все нюансы поведения человека до такой степени, что человек не сможет определить, с кем именно он общается — с ИИ или с живым собеседником. Тьюринг предложил, чтобы сторонний наблюдатель оценивал разговор между человеком и машиной, которая отвечает на вопросы. Судья не видит, кто именно отвечает, но знает, что один из собеседников — ИИ. Разговор ограничен только текстовым каналом (компьютерная клавиатура и экран), поэтому результат не зависит от способности машины отображать слова как человеческую речь. В случае, если программе удается обмануть человека, считается, что она эффективно справилась с тестом.

Символьный подход

Символьный подход к ИИ — совокупность всех методов исследования искусственного интеллекта, основанных на высокоуровневых символических (читаемых человеком) представлениях о задачах, логике и поиске. Символьный подход широко применялся в исследованиях ИИ в 1950–80-х годах. Одной из популярных форм символьного подхода являются экспертные системы, использующие сочетание определенных правил производства. Производственные правила связывают символы в логические связи, которые подобны алгоритму If-Then. Экспертная система обрабатывает правила, чтобы сделать выводы и определить, какая дополнительная информация ей нужна, то есть какие вопросы задавать, используя удобочитаемые символы.

Логический подход

Термин «логический подход» предполагает апеллирование к логике, размышлениям, решению задач с помощью логических шагов. Логики еще в XIX веке разработали точные обозначения для всех видов объектов в мире и отношений между ними. К 1965 году существовали программы, которые могли решить любую логическую задачу (пик популярности данного подхода пришелся на конец 1950–70-х годов). Сторонники логического подхода в рамках логического искусственного интеллекта надеялись выстроить на таких программах (в частности, записанных на языке Prolog) интеллектуальные системы. Однако у такого подхода два ограничения. Во-первых, нелегко взять неформальное знание и изложить его в формальных терминах, которые требуются для обработки ИИ. Во-вторых, есть большая разница между решением проблемы в теории и ее решением на практике. Даже проблемы с несколькими сотнями фактов могут исчерпать вычислительные ресурсы любого компьютера, если у него нет каких-либо указаний относительно того, какие рассуждения надо использовать в первую очередь.

Агентно-ориентированный подход

Агент — это то, что действует (от лат. agere, «делать»). Конечно, все компьютерные программы что-то делают, но ожидается, что компьютерные агенты будут делать больше: работать автономно, воспринимать сигналы окружающей среды (с помощью специальных датчиков), адаптироваться к изменениям, создавать цели и выполнять их. Рациональный агент — это тот, кто действует так, чтобы достичь наилучшего ожидаемого результата.

Гибридный подход

Предполагается, что этот подход, который стал популярным в конце 80-х, работает наиболее эффективно, так как представляет собой сочетание символьных и нейронных моделей. Гибридный подход увеличивает когнитивные и вычислительные возможности машины.

Игра в шахматы

Знаменитый Deep Blue был крут, но в первом матче проиграл Гарри Каспарову со счётом 2 : 4, а во втором – выиграл с результатом 3.5 : 2.5. Но он изначально был «накачан» знаниями.

А новая система AlphaZero до турнира знала лишь как ходят фигуры и какова цель игры. Но она обучилась и за четыре часа победила программу по игре в шахматы Stockfish 8, которая считалась лучшей в мире.

AlphaZero – улучшенная версия AlphaGo Zero. Она 100 раз подряд обыграла знаменитую систему AlphaGo, которой удалось одержать победу над сильнейшим из игроков-людей.

Итак, у AlphaZero была информация о том, как ходят фигуры, и обучающий нейросетевой алгоритм с подкреплением. Когда турнир начался, AlphaZero стал играть сам с собой, обрабатывая до 800 тыс. позиций в секунду.

По человеческим меркам, AlphaZero провел за игрой в шахматы около 1400 лет. И достиг уровня абсолютного чемпиона мира по шахматам. По крайней мере, среди компьютеров.

После этого AlphaZero потратил восемь часов и превзошел AlphaGo в го. А потом ещё ща два часа разгромил программу Elmo, которая раньше считалась неоспоримым чемпионом по игре в сёги (японскую стратегическую настольную игру).

Медицина

Искусственный интеллект широко используется для поддержки принятия решений в медицине. Но как вам такой пример: китайский интеллектуальный робот Xiaoyi («Сяо И») впервые сдал экзамен на врача и получил лицензию на врачебную деятельность.

Разработка компании iFlytek находит и анализирует информацию о пациенте. К работе он приступит в марте. Предполагается, что Xiaoyi будет ассистировать врачам, чтобы повысить качество их работы. Робот сосредоточится на противоопухолевой терапии, а также на обучении врачей общей практики, которых в сельских районах Китая очень мало.

Ещё одно интересное решение – Wave Clinical Platform от ExcelMedical. Система следит за жизненными показателями пациента и предупреждает врачей за шесть часов до его возможной скоропостижной смерти. Платформа системно анализирует информацию и рассчитывает риски неблагоприятного исхода.

В рамках тестов в медицинском центре Питтсбургского университета система предотвратила шесть смертей тяжелобольных пациентов. Человек на такое просто не способен, потому что не придаст значение небольшому изменению показателей и не найдёт связь между ними.

Система DeepFaceLIFT, разработанная учёными Массачусетского технологического института, способна распознавать уровень боли по микровыражениям лица. Она решает очень сложную задачу, так как каждый человек выражает боль по-разному. DeepFaceLIFT позволит понять, кому действительно нужны обезболивающие, а кто страдает зависимостью от наркотических препаратов.

Система для анализа речи и поиска признаков психических заболеваний – разработка IBM. Специалисты отдела по вычислительной психиатрии и нейровизуализации создали интеллектуальную систему, которая может предсказать развитие психоза по речи пациента.

Пациентам предлагалось просто рассказать о себе. Система могла определить, что речь человека стала беднее, он перескакивает с одной идеи на другую и т.п. Это характерные признаки психоза.

После улучшения системы пациентам предложили пересказать ей только что прочитанную историю. На этих примерах искусственный интеллект в 83% случаев ставил правильный диагноз. Это объективно выше, чем у врачей, даже с солидным опытом.

Движение без сетки

графПример 1: узел в каждой клетке сетки. Поиск начинается с узла, в котором находится агент, и заканчивается конечной клеткой.Пример 2: гораздо меньшее количество узлов, или . Поиск начинается с агента, проходит через необходимое количество точек пути и продвигается к конечной точке. Заметьте, что перемещение к первой точке пути к юго-западу от игрока — это неэффективный маршрут, поэтому обычно необходима определённая постобработка сгенерированного пути (например, для того, чтобы заметить, что путь может идти напрямую к точке пути на северо-востоке).
сайт Амита Пателаhttps://habr.com/post/331192/

Стоит ли разработчикам бояться конкуренции

Представители портала HeadHunter называют программистов «дефицитным и капиталоемким кадровым ресурсом», подчеркивая, что свободных специалистов в этой отрасли, готовых откликнуться на открытую вакансию, пока довольно мало. Это влечет за собой и рост зарплат, который в первом полугодии 2021 г. составил 9% год к году.

В ближайшие несколько лет ожесточенной конкуренции со стороны ИИ программистам опасаться не стоит

Программисты действительно могут получать сотни тысяч рублей. Как сообщал CNews, хорошей зарплатой обеспечены как минимум разработчики, пишущие на Python и C#.

На ИБ-отрасль неизбежно окажет влияние развитие роботизации
Безопасность

Однако внедрение искусственного интеллекта, способного писать программы, позволит компаниям резко сократить свои расходы – в пределах 6 млн руб. в год, и это еще на самых простых проектах, над которыми трудятся два-три программиста. Если же над той или иной программой трудятся до 10 человек, их замена на искусственный интеллект позволит сэкономить до 30 млн руб., рассказали «Ведомостям» представители HeadHunter.

Более оптимистично смотрит на внедрение искусственного интеллекта в среду программирования основатель и гендиректор группы vvCube Вадим Ткаченко. «С развитием технологии программистов, с одной стороны, будет требоваться меньше, с другой – за искусственным интеллектом нужно будет кому-то следить, а для этого нужны программисты более высокого уровня», – сообщил он изданию.

Cyborg Writer

Этот экспериментальный текстовый редактор может добавить продолжение к словам и высказываниям, которые вы напишете. Просто введите любые слова, а искусственная нейронная сеть завершит ваше предложение так, будто бы оно было написано Шекспиром, Верховным судом США, Тупаком Шакуром или кем-то ещё.

Вся система основана на обученной модели. Она используется для прогнозирования наиболее подходящего ответа на введённый текст.

Иногда варианты Cyborg Writer далеки от смысла введённого текста. Но создатели не обещали безупречную точность с самого начала и назвали его экспериментальным проектом. Возможно, сервис со временем станет более продвинутым. А пока он вполне подойдёт, чтобы просто поиграться и посмотреть какой вариант ответа ИИ подберёт для вас.

Текущее состояние дел

Q-Learning

В чём недостатки?

  1. Модель плохо справляется с изменчивой реальностью. Если всю жизнь нас награждали за нажатие красной кнопки, а теперь наказывают, причём никаких видимых изменений не произошло… QL будет очень долго осваивать эту закономерность.
  2. Qn может быть очень непростой функцией. Например, для её расчёта надо прокрутить цикл из N итераций — и быстрее не выйдет. А прогнозная модель обычно имеет ограниченную сложность — даже у крупной нейросети есть предел сложности, а циклы крутить почти ни одна модель машинного обучения не умеет.
  3. У реальности обычно бывают скрытые переменные. Например, который сейчас час? Это легко узнать, если мы смотрим на часы, но как только мы отвели взгляд — это уже скрытая переменная. Чтобы учитывать эти ненаблюдаемые величины, нужно, чтобы модель учитывала не только текущее состояние, но и какую-то историю. В QL можно это сделать — например, подавать в нейронку-или-что-у-нас-там не только текущее S, но и несколько предыдущих. Так сделано в RL, который играет в игры Атари. Кроме того, можно использовать для прогноза рекуррентную нейросеть — пусть она пробежится последовательно по нескольким кадрам истории и рассчитает Qn.

Model-based системы

  1. Ресурсоёмкость. Допустим, на каждом такте нам нужно сделать выбор из двух альтернатив. Тогда за 10 тактов у нас соберётся 2^10=1024 возможных плана. Каждый план — это 10 запусков модели. У если мы управляем самолётом, у которого десятки управляющих органов? А реальность мы моделируем с периодом в 0.1 секунды? А горизонт планирования хотим иметь хотя бы пару минут? Нам придётся очень много раз запускать модель, выходит очень много процессорных тактов на одно решение. Даже если как-то оптимизировать перебор планов — всё равно вычислений на порядки больше, чем в QL.
  2. Проблема хаоса. Некоторые системы устроены так, что даже малая неточность симуляции на входе приводит к огромной погрешности на выходе. Чтобы этому противостоять, можно запускать несколько симуляций реальности — чуть-чуть разных. Они выдадут сильно различающиеся результаты, и по этому можно будет понять, что мы находимся в зоне такой вот неустойчивости.
Гость форума
От: admin

Эта тема закрыта для публикации ответов.