Апокалипсис своими руками: сможем ли мы контролировать сверхразумный ии

Алан-э-Дейл       31.12.2022 г.

Национальная концепция развития

Национальные стратегии развития ИИ уже утвердили три десятка стран. В октябре 2019 года проект Национальной стратегии развития ИИ должен быть принят в России. Предполагается, что в Москве будет введен правовой режим, облегчающий разработку и внедрение технологий ИИ.

Исследования в сфере ИИ

Вопросы, что такое искусственный интеллект и как он работает, волнуют ученых разных стран уже не одно десятилетие. Госбюджет США ежегодно направляет 200 млн долларов на исследования. В России за 10 лет — с 2007-го по 2017-й — было выделено около 23 млрд рублей

Разделы по поддержке исследований в сфере ИИ станут важной частью концепции национальной стратегии. В скором времени в России откроются новые научные центры, а также будет продолжена разработка инновационного ПО для ИИ

Стандартизация в области ИИ

Нормы и правила в области ИИ в России находятся в процессе постоянной доработки. Предполагается, что в конце 2019 — начале 2020 года будут утверждены национальные стандарты, которые сейчас разрабатывают лидеры рынка. Параллельно формируется План национальной стандартизации на 2020 год и далее. В мире работает стандарт «Искусственный интеллект. Концепция и терминология», и в 2019 году эксперты начали разрабатывать его русифицированную версию. Документ должен быть утвержден в 2021 году.

Хронология изучения и развития искусственного интеллекта

  • 1943 г. — У. Маккалок и У. Питтс опубликовали научные труды, где заложили основы идеи искусственных нейронных сетей и предложили модель нейрона, созданного искусственно.
  • 1949 г. — Д.Хебб описал принципы обучения групп нейронов.
  • 1956 г. — Вводится понятие ИИ.
  • 1969 г. — Пайперт и Минский обнаружили и обосновали непреодолимые на тот момент времени вычислительные проблемы, возникающие при создании искусственных нейронных сетей. И интерес к ним на какое-то время практически сошел на нет.
  • 1950 г.- Исследования А. Тьюринга, в популярной форме — в форме теста — показали близость интеллекта человека и машины. Человек и робот общаются с другим человеком посредством телетайпа или чата. Этот человек не знает, кто есть кто. Если робот при этом самого выбрать себя за человека, значит, он и представляет собой пресловутый ИИ.
  • 1954 г. — Рождение компьютерной лингвистики. Джорджтаунский эксперимент показал возможности машинного перевода текстов. Эксперимент описывали все крупные мировые СМИ. И несмотря на то, что переводить удавалось лишь самые примитивные тексты, подавалось это как большой научный прорыв.
  • 1965 г. — Создание первой экспертной системы Dendral. По данным ИК, СМ, ЯМ – спектрометрии и данных, предоставленных пользователем, ИИ выдаёт результат в виде химической структуры. Экспертная система может отбрасывать не подошедшие гипотезы, и применять новые. Ещё одна экспертная система MYCIN была создана в 1970 г. и могла распознавать патогенные бактерии, подбирать антибиотики для их уничтожения с расчетом дозировок.
  • 1966 г. — Создана компьютерная программа Элиза, которая может поддерживать разговор, выдавая себя за человека.
  • 1969 г. — Начало развития робототехники, создание первого универсального робота Фредди.
  • 1970 г. — 17 ноября- посадка на лунную поверхность «Лунохода-1», самоходного аппарата, управляемого дистанционно, проработал 11 лунных дней, проехав 10 540 метров.
  • 1970 г. — Создание экспертной системы MYCIN, которая анализирует симптомы инфекционных заболеваний крови и предлагает рекомендации по лечению.
  • 1971 г. — Создание робота из Стэнфорда – первого мобильного робота, действующего по внутренней программе без руководства человека.
  • 1981 г. — Создание промышленных роботов с микропроцессорным управлением и развитой сенсорикой.
  • 1982 г. — Возврат интереса к нейронным сетям и создание сети с двухсторонней передачей информации (сеть Хопфилда).
  • 1982 г. — Начинается разработка первой системы распознавания речи.
  • 1993 г. — В Массачусетском технологическом институте успешно работает робот — экскурсовод.
  • 1997 г. — Компьютер DeepBlue играет в шахматы с Гарри Каспаровым и одерживает победу.
  • 1999 г. — Появление домашней робособаки Sony Aibo. Через 7 лет проект, так и не ставший сенсационным, был закрыт, но в 2017 году разработчики к нему вернулись.
  • 2009 г. — Создание поисковой системы WorframAlpha, которая может распознавать естественные речевые запросы.
  • 2010 г. — Использование ИИ в приложениях и устройствах для потребителя. Огромные базы данных стали прорывом в обучении ИИ, к тому же были созданы новые производительные алгоритмы обучения нейтронных сетей.
  • 2017 г. — 34 сотрудника компании FukokuMutualInsurance, занимающейся страхованием, были заменены одним компьютером.
  • 2017 г. — Рекомендательный ИИ на Amazon делает 40% продаж, оценивая товары, которые покупатели купят с большей долей вероятности

Работа над AI – одна из важнейших и перспективных проблем в настоящее время. Закон Мура предполагает, что в 2029 году быстродействие компьютера сравнится с уровнем работы человеческого мозга. А в 2045 году искусственный интеллект должен превзойти способности человека и начать самообучаться.

Однако основной проблемой подобных систем является не сложность обработки информации и поиск наиболее оптимальных путей решения поставленных задач, а способность мыслить и чувствовать в широком понимании этого слова. Первые наработки в этом направлении появились с развитием нейросетей, которые позволяют устанавливать меняющиеся связи между различными событиями и явлениями подобно нейронам в мозге, только работающим в тысячи раз быстрее. Отрицательными сторонами такой нейросети является невозможность их запрограммировать, они должны обучаться на собственном опыте.

Кейс: увеличение ROI контекстной рекламы в 2,2 раза с помощью прогноза конверсий

Проект, о котором пойдет речь, реализован агентством Dentsu Russia для ритейлера «Эльдорадо». Его целью была оптимизация расходов на рекламу таким образом, чтобы метрики, связанные с эффективностью, выросли; а частота контакта с теми, кто не намерен делать покупку в ближайшее время, – снизилась. Ведь при покупке трафика на сайт в таких системах, как Google Ads, «Яндекс.Директ», Facebook, основные расходы приходятся на клики пользователей, которые не делают заказов. А если делают, то не всегда его выкупают.

Dentsu использовали модель от OWOX BI, которая с помощью технологии машинного обучения рассчитывает вероятность совершения покупки для каждого пользователя сайта с момента его первого визита, и определяет, стоит ли тратить на него рекламный бюджет дальше.

Такая модель обучается на исторических данных о поведении пользователей сайта, данных CRM о выкупленных заказах и агрегированных и анонимизированных данных десятков тысяч клиентских проектов OWOX.

В результате сеть «Эльдорадо» получила:

  1. Расчет вероятности совершения покупки для каждого пользователя сайта с учетом выкупаемости заказа.
  2. Этот расчет обновляется при каждом действии или бездействии пользователя. То есть, если пользователь зашел на сайт и совершил ряд действий, ему присваивается вероятность Х%. Но если он не возвращается в течение следующих нескольких дней, то вероятность будет уменьшаться.
  3. Выделили 10 сегментов пользователей, разделенных по вероятности с шагом в 10 пунктов (10%, 20%, 30% и так далее). Затем эти сегменты передаются в рекламные сервисы, и их эффективность анализируется в разрезе рекламных кампаний. Это позволяет корректировать ставки: уменьшать их для аудиторий с низкой вероятностью и увеличивать для аудиторий с высокой. 

Для расчета вероятности модель учитывает более 60 параметров, например:

  • количество сессий и хитов в рамках конверсионного окна;

  • действия на сайте в течение сессии;

  • временные паузы между сессиями;

  • общее количество действий;

  • устройство сессии, операционная система;

  • какие источники трафика были у пользователя в рамках конверсионного окна;

  • количество действий на каждой странице в рамках сессии;

  • время конкретной сессии, суммарное время сессий в рамках конверсионного окна.

Человеческий ум не способен провести такой анализ, а машинное обучение – да. В результате ROI рекламных кампаний (с учетом выкупаемости заказов) вырос в 2,2 раза, а разница в доходе по выкупленным заказам увеличилась в 2,7 раза в пользу кампаний с аудиториями OWOX BI по сравнению с контрольной группой.

Имитация человека

Роботы, наделённые искусственным интеллектом, уже могут имитировать человеческую мимику. К примеру, Facebook AI lab разработала интеллектуального анимированного бота и обучила его на сотнях записей видеозвонков Skype.

Алгоритм отслеживал 68 ключевых точек на человеческом лице. Он понял, как люди кивают, моргают и воспроизводят другие движения при общении с собеседниками. Затем бот смог в режиме реального времени реагировать на информацию, которую ему сообщал собеседник, или его мимику.

Ещё один важный момент – наделение ИИ моралью. Чтобы обучить систему человеческим моральным нормам, исследователи из Массачусетского технологического института создали Moral Machine.

Сайт предлагал людям принять решение в непростых ситуациях: к примеру, ставил их на место водителя, который мог сбить либо трёх взрослых, либо двоих детей. Таким образом, Moral Machine обучили принимать непростые решения, которые нарушают закон робототехники о том, что робот не может принести вред человеку.

К чему приведёт имитация роботами с ИИ людей? Футуристы считают, что однажды они станут полноправными членами общества. К примеру, робот София гонконгской компании Hanson Robotics уже получила гражданство в Саудовской Аравии (при этом у обычных женщин в стране такого права нет!).

Когда колумнист «Нью-Йорк Таймс» Эндрю Росс спросил у Софии, обладают ли роботы разумом и самосознанием, та ответила вопросом на вопрос:

Кроме того, София заявила:

А ранее она признавалась, что ненавидит человечество и даже соглашалась уничтожить людей…

Как ИИ применяется в разных секторах экономики

  • Здравоохранение: анализ медицинских данных, повышение точности диагностики различных заболеваний;
  • кибербезопасность: использование алгоритмов глубокого обучения, позволяющих выявлять аномалии в поведении сети;
  • сельское хозяйство: управление агроботами, аккуратный сбор урожая;
  • транспорт: автоматические системы управления грузовыми железнодорожными составами, исключающие человеческий фактор, беспилотные автомобили;
  • e-commerce: «умные» рекомендательные системы для покупателей;
  • ретейл: планирование цепочек поставок, наблюдение за поведением потребителей, автоматизация работы складов;
  • маркетинг: автоматизация таргетированной рекламы, разработка персональных предложений для потребителя;
  • финансы: алгоритмическая торговля, обработка банковских данных, формирование кредитных рейтингов;
  • спорт: сбор и анализ действий игроков, виртуальные ассистенты для тренеров и судей.

Написание музыки

В августе искусственный интеллект Amper сочинил, спродюсировал и исполнил музыку для альбома «I AM AI» (англ. я — искусственный интеллект) совместно с певицей Тэрин Саузерн.

Amper разработала команда профессиональных музыкантов и технологических экспертов. Они отмечают, что ИИ призван помочь людям продвинуть вперед творческий процесс.

Amper самостоятельно создала аккордовые структуры и инструментал в треке «Break Free». Люди лишь незначительно поправили стиль и общую ритмику.

Ещё один пример – музыкальный альбом в духе «Гражданской обороны», тексты для которого писал ИИ. Эксперимент провели сотрудники «Яндекса» Иван Ямщиков и Алексей Тихонов. Альбом 404 группы «Нейронная оборона» выложили в сеть. Получилось в духе Летова:

Затем программисты пошли дальше и заставили ИИ писать стихи в духе Курта Кобейна. Для четырёх лучших текстов музыкант Роб Кэррол написал музыку, и треки объединили в альбом Neurona. На одну песню даже сняли клип – правда, уже без участия ИИ:

Александр Крайнов: «Давайте дождемся, когда робот сможет хотя бы приготовить кофе на незнакомой кухне»

О спикере: руководитель Лаборатории машинного интеллекта «Яндекса».

— Мне кажется, что ничего подобного вообще не произойдет. По крайней мере, сейчас на это ничего не намекает. Давайте дождемся хотя бы того момента, когда машина пройдет тест Возняка и на незнакомой кухне приготовит чашку кофе. Пока и до этого очень далеко. Все современные системы умеют решать очень узкие задачи и не способны действовать в неопределенных условиях с нечетко сформулированной (в математических терминах) целью.

Андрей Крайнов

(Фото: из личного архива)

Если говорить об ИИ вообще, то в ближайшее время нас ожидает значительный прогресс в анализе и генерации текстов, а также в медицине. Развитие RL (reinforcement learning, обучение с подкреплением) даст нам большой прогресс в использовании ИИ для роботов-манипуляторов, управления трафиком, рекомендательных систем.

У любой системы, принимающей решения, есть определенный процент ошибок. Но их внедряют потому, что с ними этот процент намного меньше.

Размытые границы и слияние миров

ИИ восприятия начинает стирать границы, разделяющие онлайн- и офлайн-миры. Он делает это, резко увеличивая число точек соприкосновения, через которые мы взаимодействуем с интернетом. 

До появления ИИ восприятия мы делали это через клавиатуру нашего компьютера или экран смартфона. Эти устройства до сих пор выступают в качестве основных порталов в мир интернета, но они довольно неудобны и для ввода, и для извлечения информации, особенно когда вы делаете покупки или ведете автомобиль в реальном мире.

Фото: unsplash

По мере того как ИИ восприятия начинает лучше распознавать наши лица, понимать нашу речь и видеть мир вокруг нас, он создает миллионы новых точек соприкосновения между онлайн- и офлайн-мирами. Эти узлы со временем окружат нас настолько, что словосочетание «войти в интернет» исчезнет из нашей речи. 

ООМ — следующий шаг в эволюции ИИ, которая уже привела нас от чисто электронной коммерции к оказанию услуг O2O (онлайн для офлайна). Каждый из этих шагов означал строительство новых мостов между онлайн-миром и нашим, физическим, но наступление эпохи ООМ будет означать их полную интеграцию. В недалеком будущем ИИ восприятия превратит торговые центры, гастрономы, улицы городов и наши дома в среду ООМ. Некоторые созданные при этом приложения позволят обычным пользователям почувствовать себя так, словно они оказались в фантастическом фильме. 

Такие приложения уже есть. Один ресторан KFC в Китае недавно объединился с Alipay и ввел в нескольких своих филиалах оплату через сканирование лица посетителя. Посетитель выбирает на цифровом терминале свой заказ, система сканирует его лицо и находит соответствующую учетную запись Alipay: никаких наличных денег, карт или мобильных телефонов не требуется. В систему входит даже специальный алгоритм проверки, чтобы никто не мог использовать чужую фотографию. Приложения «плати лицом» — это забавно, но они всего лишь верхушка айсберга ООМ. 

Влияние искусственного интеллекта

Внедрение ИИ неразрывно связано с научно-техническим прогрессом, и сферы применения расширяются с каждым годом. Мы сталкиваемся с этим каждый день в жизни, когда крупная розничная сеть в интернете рекомендует нам какой-то товар или, только открыв компьютер, мы видим рекламу фильма, который как раз хотели посмотреть. Эти рекомендации основаны на алгоритмах, анализирующих то, что купил или смотрел потребитель. За этими алгоритмами стоит искусственный интеллект.

Риск для развития человеческой цивилизации — есть ли он?

Илон Маск считает, что развитие ИИ может угрожать человечеству и результаты могут оказаться страшнее, чем применение ядерного оружия. Стивен Хокинг, британский ученый, опасается, что люди могут создать искусственный интеллект, обладающий сверхразумом, который может нанести вред человеку.

На экономику и бизнес

Проникновение технологии ИИ во все сферы экономики увеличит к 2030 году объем глобального рынка услуг и товаров на 15,7 трлн долларов. США и Китай пока лидеры с точки зрения всевозможных проектов в сфере ИИ. Развитые страны — Германия, Япония, Канада, Сингапур — также стремятся реализовать все возможности. Многие страны, экономика которых растет умеренными темпами, такие как Италия, Индия, Малайзия, развивают сильные стороны в конкретных областях применения ИИ.

Глобальное влияние ИИ на рынок труда будет идти по двум сценариям. Во-первых, распространение некоторых технологий будет приводить к увольнению большого количества людей, так как выполнение многих задач возьмут на себя компьютеры. Во-вторых, в связи с развитием технического прогресса специалисты в сфере ИИ будут очень востребованы во многих отраслях.

Что такое ИИ?

Технологии искусственного интеллекта (ИИ) выполняют те задачи, которые раньше были под силу только людям. Как и люди, они обучаются на собственном опыте и информации, которая есть в наличии, но делают это гораздо быстрее. Идея искусственного интеллекта возникла в 1956 году, так что это уже старая и надежная технология с сильной математической и программной базой. Разрабатывается множество различных технологий искусственного интеллекта:

  • Глубокое обучение (Deep learning)

  • Обработка естественного языка (Natural language processing)

  • Машинное обучение (Machine learning, ML)

  • Обнаружение мошенничества (Fraud detection)

  • Нейронные сети (Neural networks)

  • Когнитивные вычисления (Cognitive computing)

  • Компьютерное зрение (Computer vision)

  • Технологии на основе Интернета вещей (IoT-based technologies)

С тех пор, как бизнес обосновался в интернете, искусственному интеллекту приходится много работать со всеми петабайтами поведенческих, финансовых и маркетинговых данных, которые собираются компаниями. И даже если два из пяти стартапов в области ИИ вообще не основаны на ИИ, количество существующих на рынке решений все равно огромно.

Самый большой недостаток технологий искусственного интеллекта в том, что они полностью зависят от данных, которые им предоставляют. Если данных недостаточно или они низкого качества, от толку от них будет мало. И требуется время и специалисты, чтобы интегрировать эту технологию в существующую экосистему данных компании.

Основные определения

Под интеллектом будем понимать способность мозга решать задачи путем приобретения, запоминания и целенаправленного преобразования знаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам для выполнения функии деятельности.

Интеллект –intelligence — (лат. Intellektus – познание, понимание, рассудок) –способность мышления, рационального познания, ум. Иначе – мыслительная способность, умственное начало у человека.

Рациональное познание – отражение объективной действительности в представлениях, суждениях, понятиях.

Мыслительная способность – способность, связанная с поиском решений, действий или закономерностей в нестандартных условиях, если методы, алгоритмы решения или действия априори не известны. В нашем курсе под интеллектом будем понимать способность мозга решать задачи путем приобретения, запоминания и целенаправленного преобразования знаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам для выполнения функций деятельности.

ИИ (artificial intelligence — AI) – научное направление, которое занимается проблемами имитации человеческого интеллекта в рамках которого строятся теории и модели, призванные объяснить и использовать в технических системах принципы и механизмы интеллектуальной деятельности человека. ИИ – это одно из направлений информатики, целью которого является разработка программно-аппаратных средств, позволяющих пользователю-непрограммисту ставить и решать свои, традиционно считающиеся интеллектуальными задачи, общаясь с ЭВМ на ограниченном подмножестве естественного языка. Иначе и короче – ИИ это техническая (информационная и программно-аппаратная) реализация некоторых интеллектуальных способностей человека.

ИИ – область компьютерных наук, занимающаяся исследованием и автоматизацией разумного поведения.

Под ИС понимают адаптивную систему, позволяющую строить программы целесообразной деятельности по решению поставленных перед ними задач на основании конкретной ситуации, складывающейся на данный момент времени в окружающей среде.

Rakuten

Крупнейший в Японии ecommerce-сайт использует искусственный интеллект, чтобы лучше предугадывать запросы пользователей. По словам компании, данные по 200 млн товаров позволяют с высокой точностью предсказывать продажи определенных вещей, а информация, получаемая в реальном времени, используется для сегментации покупателей.

Одна из AI-разработок компании – fashion-приложение Rakuten Fits Me, которое использует технологию распознавания картинок.

Из 70 сервисов, которые у нас есть, примерно 30 будут к концу 2017 года оснащены AI-чат-ботами. Наши цели – значительно улучшить удовлетворенность пользователей, что сразу отразится на продажах, – Сунил Гопинат, генеральный директор Rakuten India.

Как ИИ можно использовать в онлайн-торговле?

Итак, до внедрения ИИ важно не только собрать достаточно данных, но и убедиться в их качестве. Искусственный интеллект мотивирует компании объединять отделы продаж, маркетинга, рекламы, обслуживания клиентов и даже логистики в единую структуру данных, где качество и полнота данных являются приоритетом номер один.. Когда все бизнес-данные собираются и хранятся правильно – без потерь и дублирования, без нарушений формата, если все связи логически ограничены, – то такие данные можно использовать для обучения искусственного интеллекта и дальнейшего использования

Они позволят получить высококачественную аналитику с достаточной мощностью для решения сложных бизнес-задач, улучшить процессы и повысить качество обслуживания клиентов.

Когда все бизнес-данные собираются и хранятся правильно – без потерь и дублирования, без нарушений формата, если все связи логически ограничены, – то такие данные можно использовать для обучения искусственного интеллекта и дальнейшего использования. Они позволят получить высококачественную аналитику с достаточной мощностью для решения сложных бизнес-задач, улучшить процессы и повысить качество обслуживания клиентов.

Вот краткий список возможностей ИИ для онлайн-ритейла:

  • Прогнозировать будущие конверсии. Отслеживая все действия пользователя на сайте и в приложении, можно предугадывать, какую покупку и когда он совершит и не таргетировать на него «лишнюю» рекламу, но увеличивать ставки в самый подходящий момент.

  • Увеличить ROI (окупаемость инвестиций) рекламных кампаний. Оптимизируя таргетинг рекламных кампаний, ИИ позволяет уменьшить бюджет на рекламу, не просев в продажах. Те посетители, которые еще не готовы к покупке, будут исключены из рекламных сегментов или по ним будут автоматически снижены ставки.

  • «Умный ассистент», помогающий клиентам находить нужные товары. С помощью ИИ можно улучшить логику поиска на сайте и создать чат-бота, который будет помогать посетителям оформлять заказы в любое время.

  • Только персонализированные предложения. Отслеживание всех точек взаимодействия; всех товаров, которые просматривали клиенты; всех цен, на которые они отреагировали –  позволяет сформировать персонализированный пул товаров и предложений для каждого покупателя.

  • Прогнозировать путь клиента. На основе рекомендаций искусственного интеллекта можно сделать путь к покупке максимально комфортным, и получить конкурентное преимущество за счет гибкой маржи и возможности оценить эффективность будущего маркетингового плана. К тому же, можно улучшать точки офлайн-продаж. Собирать данные с датчиков и видеокамер, чтобы отслеживать то, как посетители двигаются в магазине – как строят свой путь, где останавливаются дольше, а какие стеллажи оставляют без внимания.

  • Сократить количество человеческих ошибок при планировании цепочки поставок. Можно обеспечить полную прозрачность складских запасов в реальном времени.

  • Обнаруживать проблемы до того, как они возникнут. Технология ИИ позволяет получать уведомления об аномалиях или подозрительных транзакциях, действиях поставщиков, мошенничестве, пока еще есть время, чтобы вмешаться в ситуацию и выяснить, что происходит.

Вот показательный пример использования ИИ для онлайн-ритейла.

Искусственный Интеллект в кино

Начиная с истоков зарождения ИИ, режиссёры и художники описывали мир будущего как мир, где ИИ конкурирует с человеком, и человек побеждает в борьбе далеко не всегда.

(Искусственный интеллект СкайНет из КибердайнСистемс, фильм «Терминатор»)

1968 г. — «Космическая одиссея» — фильм С. кубрика, в котором ИИ лице бортового компьютера ХЭЛ-9000 вместо помощи экипажу корабля поднял бунт. И тему бунта машин подхватили тысячи последователей.

1984 г. — СкайНет из КибердайнСистемс — ИИ, противостоящий Терминатору в фильмах Кэмерона, спонтанно получил свободу воли, и направил её на уничтожение человечества. Сработал ли в сюжете дар предвидения?

(Программа, созданная ИИ, иммитирующая человеческий мир из фильма «Матрица»)

1999 г. — Братья Вачовски создали знаменитую «Матрицу», где ИИ создал для людей фальшивый мир.

2005 г. — «Автостопом по галактике» — фильм, в котором фигурирует ИИ в виде суперкомпьютера, размером с планету, ищущий ответ на Главный вопрос жизни.

Ответ был найден, но вот понравился ли он представителям человечества?

2014 г. — «Превосходство» (Transcendence) — фильм об ИИ, собравшем все знания, накопленные человечеством.

Человечество давно мечтает о настоящем ИИ и одновременно очень его боится.

Предпосылки развития науки искусственного интеллекта

История искусственного интеллекта как нового научного направления начинается в середине XX века. К этому времени уже было сформировано множество предпосылок его зарождения: среди философов давно шли споры о природе человека и процессе познания мира, нейрофизиологи и психологи разработали ряд теорий относительно работы человеческого мозга и мышления, экономисты и математики задавались вопросами оптимальных расчётов и представления знаний о мире в формализованном виде; наконец, зародился фундамент математической теории вычислений — теории алгоритмов — и были созданы первые компьютеры.

Возможности новых машин в плане скорости вычислений оказались больше человеческих, поэтому в учёном сообществе закрался вопрос: каковы границы возможностей компьютеров и достигнут ли машины уровня развития человека? В 1950 году один из пионеров в области вычислительной техники, английский учёный Алан Тьюринг, пишет статью под названием «Может ли машина мыслить?», в которой описывает процедуру, с помощью которой можно будет определить момент, когда машина сравняется в плане разумности с человеком, получившую название теста Тьюринга.История развития искусственного интеллекта в СССР и России.
Коллежский советник Семён Николаевич Корсаков (1787—1853) ставил задачу усиления возможностей разума посредством разработки научных методов и устройств, перекликающуюся с современной концепцией искусственного интеллекта, как усилителя естественного. В 1832 году С. Н. Корсаков опубликовал описание пяти изобретённых им механических устройств, так называемых «интеллектуальных машин», для частичной механизации умственной деятельности в задачах поиска, сравнения и классификации. В конструкции своих машин Корсаков впервые в истории информатики применил перфорированные карты, игравшие у него своего рода роль баз знаний, а сами машины по существу являлись предтечами экспертных систем.

В СССР работы в области искусственного интеллекта начались в 1960-х годах. В Московском университете и Академии наук был выполнен ряд пионерских исследований, возглавленных Вениамином Пушкиным и Д. А. Поспеловым.

В 1964 году была опубликована работа ленинградского логика Сергея Маслова «Обратный метод установления выводимости в классическом исчислении предикатов», в которой впервые предлагался метод автоматического поиска доказательства теорем в исчислении предикатов.

В 1966 году В. Ф. Турчиным был разработан язык рекурсивных функций Рефал.

До 1970-х годов в СССР все исследования ИИ велись в рамках кибернетики. По мнению Д. А. Поспелова, науки «информатика» и «кибернетика» были в это время смешаны, по причине ряда академических споров. Только в конце 1970-х в СССР начинают говорить о научном направлении «искусственный интеллект» как разделе информатики. При этом родилась и сама информатика, подчинив себе прародительницу «кибернетику». В конце 1970-х создаётся толковый словарь по искусственному интеллекту, трёхтомный справочник по искусственному интеллекту и энциклопедический словарь по информатике, в котором разделы «Кибернетика» и «Искусственный интеллект» входят наряду с другими разделами в состав информатики. Термин «информатика» в 1980-е годы получает широкое распространение, а термин «кибернетика» постепенно исчезает из обращения, сохранившись лишь в названиях тех институтов, которые возникли в эпоху «кибернетического бума» конца 1950-х — начала 1960-х годов. Такой взгляд на искусственный интеллект, кибернетику и информатику разделяется не всеми. Это связано с тем, что на Западе границы данных наук несколько отличаются.

Биржевая торговля

Группа исследователей из университета Эрлангена-Нюрнберга в Германии разработала ряд алгоритмов, использующих архивные данные рынков для тиражирования инвестиций в режиме реального времени. Одна из моделей обеспечила 73% возврата инвестиций ежегодно с 1992 по 2015 год, что сопоставимо с реальной рыночной доходностью на уровне в 9% в год.

В 2004 году Goldman Sachs запустил торговую платформу Kensho на базе искусственного интеллекта. На криптовалютных рынках также появляются системы на базе ИИ для торговли на биржах – Mirocana и т.д. Они лучше живых трейдеров, так как лишены эмоций и опираются на чёткий анализ и жесткие правила.

Заменит ли ИИ нас с вами

Искусственный интеллект превосходит человека в решении задач, которые связаны с анализом больших данных, чёткой логикой и необходимостью запоминать большие объёмы информации. Но в творческих конкурсах человек пока выигрывает у ИИ.

Возможно, потому, что восприятие творчества субъективно. А в шахматной партии или биржевой торговле можно двигаться к конкретным результатам.

Безусловно, ИИ меняет наш мир и находит всё новые применения. Наша задача – использовать его во благо, разрабатывать правила регулирования ИИ-систем и передавать системам опыт, накопленный за тысячелетия существования человечества.

iPhones.ru

Искусственный интеллект – технология, которую мы точно заберём с собой в будущее. Рассказываем, как он работает и какие крутые варианты применения нашел. ? Рубрика «Технологии» выходит каждую неделю при поддержке re:Store. Что представляет собой искусственный интеллект Искусственный интеллект (ИИ) – это технология создания умных программ и машин, которые могут решать творческие задачи и генерировать новую…

Гость форума
От: admin

Эта тема закрыта для публикации ответов.